Polynomials biorthogonal to Appell's polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero Distribution of Composite Polynomials and Polynomials Biorthogonal to Exponentials

We analyze polynomials Pn that are biorthogonal to exponentials {e−σn,j }j=1, in the sense that ∫ ∞ 0 Pn(x)e −σn,j x dx = 0, 1 ≤ j ≤ n. Here α >−1. We show that the zero distribution of Pn as n→∞ is closely related to that of the associated exponent polynomial Qn(y)= n ∏ j=1 (y + 1/σn,j )= n ∑ j=0 qn,j y j . More precisely, we show that the zero counting measures of {Pn(−4nx)}∞n=1 converge weak...

متن کامل

Some Explicit Biorthogonal Polynomials

Let α > 0 and ψ (x) = x. Let Sn,α be a polynomial of degree n determined by the biorthogonality conditions Z 1 0 Sn,αψ j = 0, j = 0, 1, . . . , n− 1. We explicitly determine Sn,α and discuss some other properties, including their zero distribution. We also discuss their relation to the Sidi polynomials. §

متن کامل

Cauchy biorthogonal polynomials

The paper investigates the properties of certain biorthogonal polynomials appearing in a specific simultaneous Hermite–Padé approximation scheme. Associated with any totally positive kernel and a pair of positive measures on the positive axis we define biorthogonal polynomials and prove that their zeros are simple and positive. We then specialize the kernel to the Cauchy kernel 1 x+y and show t...

متن کامل

Peakons and Cauchy Biorthogonal Polynomials

Peakons are non-smooth soliton solutions appearing in certain nonlinear partial differential equations, most notably the Camassa-Holm equation and the Degasperis-Procesi equation. In the latter case the construction of peakons leads to a new class of biorthogonal polynomials. The present paper is the first in the series of papers aimed to establish a general framework in which to study such pol...

متن کامل

Asymptotic zero distribution of biorthogonal polynomials

Let ψ : [0, 1] → R be a strictly increasing continuous function. Let Pn be a polynomial of degree n determined by the biorthogonality conditions ∫ 1 0 Pn (x)ψ (x) j dx = 0, j = 0, 1, . . . , n− 1. We study the distribution of zeros of Pn as n → ∞, and related potential theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1974

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700043781